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The linear Rayleigh-Taylor stability of superposed viscous fluids with interfacial 
transfer of mass and heat is first considered for layers of finite thickness. A dispersion 
relation is obtained. It is then employed to derive stability and instability criteria for 
the case of two semi-infinite layers as well as the case where one of the layers is finite. 
From these criteria one arrives a t  a critical dispersion relation and a new critical 
wavenumber. This new critical wavenumber is distinct from the classical value owing 
to the presence of a parameter which depends, in a very simple manner, upon the 
kinematic viscosity of the fluids, the surface tension and the rate of interfacial transfer 
of mass and energy. Also it is found that the stabilizing effect of the surface tension is 
neither affected by the arrangement of the system nor the direction of the temperature 
gradient. However, the effects of the viscosity and the gravity will depend upon the 
relative positions of the superposed fluids and the direction of the temperature 
gradient a t  the interface. 

1. Introduction 
The problem of interfacial stability of superposed fluids has been investigated since 

the turn of the century by Rayleigh (1900), Harrison (1908), Taylor (1950), Lewis 
(1950) and Chandrasekhar (1955), who assumed that interfacial transfer of mass and 
energy could be neglected and used linear analysis. Interest in this problem subsided 
during the sixties but was revived in the early seventies. A very comprehensive 
analysis for inviscid fluids with interfacial transfer of mass and heat was given by 
Hsieh (1972, 1978); meanwhile an investigation of the marginal instability a t  an 
interface of a rapidly evaporating pure liquid under reduced pressure was carried out 
by Palmer (1976). The investigation of Palmer dealt essentially with the case where 
there was a very intense transfer of heat and mass across the vapour-liquid interface, 
and where the vapour density might be neglected. The present study will deal with 
the case of two superposed fluids of different densities where the density of the lighter 
fluid is not negligible and the interfacial transfer of mass and energy is not necessarily 
very intense. 

As described in Hsieh’s papers (1972, 1978), amongst other variations of the prob- 
lem of interfacial stability, a situation where the effect of heat and mass transfer 
across the interface will be important arises from film-boiling as well as pool-boiling 
heat transfer. An example with some experimental results was provided by Dhir & 
Lienhard (see Hsieh 1972). 

Another situation where the present study may find an application is in the area 
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of secondary oil recovery, where one may consider the cyclic oil-drop process (instead 
of the bubble-escapement process) in which the unstable interfacial waves grow and 
collapse to release oil drops. 

Furthermore the new critical dispersion relation, 

4av 
k 2 f - k - k !  = 0, 

0. 

offers an explanation of why i t  evaded both the investigation of Chandrasekhar (who 
neglected a) and that of Hsieh (who neglected v ) ,  where a, v, u and kc are the rate 
of interfacial mass and heat transfer, kinematic viscosity, surface-tension coefficient 
and the classical critical wavenumber respectively. It is because a and v are coupled 
together in the critical case, that neglecting one would mean the disappearance of 
the other. In the present study the method of approach to the problem may be out- 
lined as follows. 

The problem is first converted to a boundary-valued problem in two adjoining 
regions with a common boundary. The solution in each region is matched at  the inter- 
face to conserve mass, momentum and energy. The requirement of a non-trivial 
solution in each fluid leads to a dispersion relation in the form of a transcendental 
equation which then enables the deduction of dispersion relations as quartic and cubic 
equations for the case of two semi-infinite layers and the case of one layer finite, 
respectively. A study of the nature of the roots of these polynomial equations leads 
to criteria of interfacial stability. That is, a small sinusoidal wave at the interface will 
grow or decay with time in accordance with certain necessary and sufficient conditions. 
Finally these criteria are employed to derive a critical dispersion relation and a new 
critical wavenumber which is different from the well-known classical value, viz. if 

where g is the gravity constant, and #I), p(2) and u are the densities and the surface- 
tension coefficient respectively. 

2. Formulation 
We shall consider two superposed fluids of densities p(l) and p@, and of viscosities 

,dl) and p(2) such that a t  equilibrium the interface lies in the plane y = 0. The tem- 
peratures at  the walls are Tl and T,. Thus figure 1 summarizes the geometry of the 
problem. 

Let the wavelike profile of the interface be represented by 

#(z,y,t) = Y - T ( z , t )  = 0, (1) 

where r](z,t) = [eie, 6’ = i (kx+nt) ,  [ is the amplitude, k is the wavenumber of the 
interfacial wave and n is a constant. If the perturbed velocity components and the 
pressure are 

u = ii(y)ece, v = w(y)eie, p = @(y)eiee, 

then, substituting these into the Navier-Stokes equations for the conservation of 
momentum and linearizing the two differential equations, with the aid of the equation 
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FIGURE 1. The problem considered. 

of continuity (i.e. the conservation of mass), one obtains a differential equation for w, 
the amplitude of the vertical component of the perturbed velocity: 

[ 1 - & (-$ - k2)] (6 - k2) w = 0. 

Subject to the boundary conditions that w = dw/dy = 0 on y = - h, and y = h,, it  
can be shown that the solution of (2) is 

w(l)= A,(coshq,q3-coshkq3)+B,(q,sinhkq3-ksinhqlq5), -h, < y < 7;  (3) 

w(,) = A ,  (cosh q, $ - cosh k$) + B2(q, sinh k+ - k sinh q2$),  (4) 7 c y < h,. 

and A,,  B,, A ,  and B, are constants. 

conservations of mass, momentum and energy across the interface lead to 
Interfacial conditions. Using the simplified formulation of Hsieh (1972, 1978), the 

where ((2)) is an expression exactly the same as the one on the left but for the super- 
script 1 being replaced by 2; thus ,(,) and v(l) are respectively the horizontal and 
vertical components of velocity in region 1, and ~ $ 2 ,  T L ~ ,  r(l$, rr$ the components of 
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the Cartesian stress tensor in region 1, referred to figure 1 ; d2), d2), I$!., T L ~ ,  and T F ~  
are similarly defined quantities in region 2; 1/R, + 1/R, is the curvature of the inter- 
face, L is the latent heat of transformation from the fluid of density p(1) to the fluid of 
density ~ ( 2 ) ;  and F(7)  is a function of the instantaneous profile of the interface, and is 
determined from the heat-transfer relation a t  equilibrium (cf. Hsieh 1978). Physically 
the left-hand side of (8) represents the latent heat released during the phase trans- 
formation, while P(7)  on the right-hand side of (8) represents the net heat flux across 
the interface, so that energy will be conserved. By neglecting nonlinear terms, one 

obtains, from (6), d2~(1)  
p(1) (-@- +k,W(')) = {(2)}, 

which is the same as the condition of continuity of tangential stresses across the 
interface (cf. Chandrasekhar 1961). From (5)-(8) and the no-slip condition across the 
interface, neglecting nonlinear terms and suppressing the factor eis give the following 
interfacial conditions: 

intheabovea = P'(O)/L,P'(O)isthederivativeofF(~)atp = 0; a* = ( p ( 2 ) - p ( 1 ) ) g - k 2 r ;  
p$) = p ( l ) / ( a  + imp(,)), p$) = 3,&) + (in/k2) p(1) in - h, < y < p ,  i2 = - 1 ; p$) and p$) 
are similarly defined in r < y < h,. For (3) and (4) to be the solution of the problem 
under consideration, they must satisfy the interfacial conditions (9)-( 12). 

3. Dispersion relation 

the following system of algebraic equations for A,, B,, A ,  and B,: 
Substitution of solution (3) and (4) in the interfacial conditions (9)-(12) leads to 

U(1)A , + kq, b(')B, + u(2)A, - kq2 b(2)B2 = 0, 

d1)A , + d(')B, - c")A , + d@)B, = 0, 

- p$) b(l)A, + p$) e(l)B, + p p )  b(2)A2 + p$ &)B, = 0, 

( - b(1) - p,$) ,(I) + f ( ~ )  A ,  + (a*&) e(1) - pg) b(U + l(1)) B, 

+ ( - u(2) +f'2')  A ,  + (#up kq, b(2) - P) B, = 0;  

where a(,) = q1 sinh q1 h, - k sinh kh,, 

b(l) = cash kh, - cash q1 h,, 

~(1) = /A')[(& + k2) cash qlhl - 2k2 cash kh,], 

d(l) = p(Q[2k2q1 sinh kh, - k(qy + k2) sinh qlhl], 

e(1) = q1 sinh kh, - k sinh qlh,, 
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f(l) = '3' (p: sinh q1 h, - k3 sinh kh,), 

Z(1) = '3 (k2 cosh kh, - qq cosh q, h,) ; 

(1) 

k2 

k 
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a(2), b(2), d2), d@), e@), f(,) and I(,) are similarly defined. In order that A,, B,, A ,  and B, 
are not all zero, the determinant of the coefficient matrix of the above system of 
algebraic equations must vanish; i.e. 

@(n, k; a, h,, h,; cr, u(l), ~@),p( l ) ,p(~))  = 0. (13) 

Equation (13) is given explicitly in appendix A and is the dispersion relation for two 
finite layers of viscous fluids, superposed above one another as shown in figure 1. 

If h, --f co and h, -+ co, (13) becomes 

@(n, k; a, 00, m; cr, dl), u@),p(l), $2)) = 0, 

which is identical with the dispersion relation, obtained by Chandrasekhar (196l), when 
a -+ 0, i.e. when the interfacial transfer of heat and mass is neglected. The same result 
could also be obtained by considering directly two semi-infinite layers of viscous fluids 
superposed above one another. Again one will recover the result of Chandrasekhar 
upon neglecting interfacial heat and mass transfer. 

4. Interfacial stability when a > 0 (a defined in equation (12)) 
Case ( 1 ) :  Two semi-injinite layers 

Letting h, -+ co, h, + co, dl) = Y(,) = Y and z = in/u, then p1 = p, = p = (k2+z)*  and 
dispersion relation (13) becomes a quartic equation in z, viz. 

b,z4 + b, z3 + b,z2 + b,z + b, = 0, 
where 

b, = ( p ( l ) + ~ ( ~ ) ) , ,  

+ 2k2[a + ap(,)( 1 - 2a,a,)] 

+ k2( 2a - p(l) - pc2)) + 2k(p@) + pc2)) 1 
a + k2( 3a + p(l) + p(,)) ] ( 8k3a - - 64k6a2, - 
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Since (14) is a real quartic equation in z, b, < 0 implies that there are a t  least one 
positive and on0 negative real root (Burnside & Panton 1892). But each perturbed 
quantity of the flow has been multiplied by a factor exp (ikx + vzt), so a positive real 
root of (14) corresponds to an unstable mode of the interfacial disturbance, which will 
grow exponentially with time. If the coefficient b, < 0, then either 

or 
CT* 4ka 

8k3a < - < -. 
v2 v 

These are sufficient conditions for interfacial instability. We shall return to them later. 
By examining the roots of the quartic (14), one obtains criteria for interfacial 

stability. It is well known that, if all the roots of a quartic equation are negative, all 
the coefficients of the equation are positive (Burnside & Panton 1892; Beuriger 1901). 
However, one can show (cf. appendix B) that the converse is not necessarily true and 
that the sufficient condition for all the roots (or their real parts) of (14) to be negative 
are 

Substituting the coefficients b,, b,, b,, b, and b4 from (14) into (16) leads to 

b l b 2 b 3 - b o b ~ - b ~ b 4  > 0, bJbo > 0. 

2kzh5 + [k4(2 + 706 - €2) - 48*] h4 + 2k[k4( 1 + 56s + 3 2 7 ~ ~  - 16s3) 

- (3 + 306 - e2) 8*] h3 + [81cS(7~ + 1 5 2 ~ ~  + 1 9 3 ~ ~  - 246,) 

+k4(9- 1 3 8 ~ - 2 6 0 e ~ + 2 2 s ~ ) 8 * + & ( 1 - 3 s ) 8 * ~ ] h ~  

+ k2[ 16ks(s + 44s2 + 288s3 - 28s4 - €5) - 2k4( 1 - 6s + 3 6 0 ~ ~  + 162s3 - 25s4) i7* 
+ (1 - E - 4s') 8*2] h + k4[ 128k's2( 1 + 246 - 3~') 

- 8k4e( 1 + 32s + 88s2 - 2e3 - €4) 8" - (1 - 4s + 6s2 + 4s3 + s4) i7*2] > 0,  

and 
4ka g* 

8k3a > - > - 
v v2' 

where 

Since each negative root (or a complex root with a negative real part) of (14) corres- 
ponds to a stable mode of the interfacial disturbance, (17) and (18) which were ob- 
tained from (16) are the sufficient conditions that all the modes of the interfacial 
disturbance will be stable. But, from (18), one obtains 

Thus provided a satisfies (18)" and is sufficiently large, according to the coefficients 
b,, b,, b,, b, and b, of (14) since blb2b, = O(a5), bob; = O(a4) and b;b, = O(a3), equation 
(17), i.e. the first inequality of (16), will be satisfied. Therefore, if a satisfies (18)* 
and is sufficiently large, (17) may be relaxed. Hence one obtains from (18)* the 
stability criterion for interfacial disturbances, when a satisfies 

(19) k20- + 4kav - (p(2) - $1)) g > 0.  
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Returning to the instability criteria (15a) and (16b), one can rewrite them as 

and 

(15a)* 

(15b)*  

respectively. Both (15a)* and (15b)*  are compatible with the stability criterion 
(is)*, but from (15a)* one obtains 

k% + 4 k ~ ~  - (/d2) - #’)) g < 0,  (20) 

i.e. when there is interfacial transfer of heat and mass such that a satisfies (20), inter- 
facial waves will be unstable. 

In  the case of inviscid fluids of finite thickness, i.e. v(l) + 0 and v(,) -+ 0, from the 
dispersion relation ( 1 3 )  

one recovers the established result, given by ( 2 3 )  in Hsieh’s (1978) paper. 

@(n, lc; a, h,, h,; u, O,O,p(l), p@)) = 0 

Case (2) : Finite and semi-infinite layers 

This is the case which has the physical realization of a very thick layer of liquid super- 
posed on a thin layer of vapour. Let v(l) = v(2) = v.  Then as h, + 0, h, -+ co, and, if the 
fourth- and higher-order terms of h, may be neglected, the dispersion relation ( 1 3 )  
becomes 

where 
i 

z = - n ,  

c , x ~ + c , x ~ + c 2 z + c ~  = 0, (21) 

V 

c,, = h;(a + flbkh,), 

ah, 1 2kh, 2kzh; 
c1 = - ( 2 7 ~  + dkh,) - - - - + - (2b - 1) + $k3g(4b - 1 ), v p  Y 2  Y Y 

2 

Y 
c,  = (3)’ [ y2a + kh, y (ya  -:)I + $ [ -: - 4kh, + k2h37b - 4 )  + ek3h!] +- q*, 

2 , e = 6 y - 8 - -  
3 3Y’ 

1 b = I-- d =  
Y ’  

To be consistent with the approximation of neglecting the fourth- and higher- 
order terms of h,, it was assumed that q* = O(h:), as h, + 0 .  Since y > 1, a > 0 and 
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b > 0, therefore c,, > 0. If c,  < 0, the cubic equation (21 )  will have a t  least one positive 
real root (see, for example, Burnside & Panton 1892), and hence the interfacial wave 
will have at least one unstable mode. But if c3 < 0 in (21 ) ,  then q* must satisfy either 

G < F < q *  or q * < G < F .  
When a > 0, F and G, defined in the above, clearly satisfy G < P. On the other hand, 
for a* defined in (12 ) ,  if q* < G, 

[(p(2)-p(1))g- kza]  < a[l  - (y-  1) kzh?], 
3v 

which becomes (p@)--p(l)) g - k 2 a  < 0, as a -+ 0 or when y = p@)/p(l) = 1 + l/(kZhq). But 
y = ~ ( ~ ) / p ( l )  is a dimensionless parameter which depends upon the densities of the 
fluids, while h,, the thickness of the bottom fluid layer, depends only on the geometry 
of the problem. Thus h, -+ 0 is equivalent to y -+ co for any fixed k,  according to 
y = 1 + l / ( k 2 h t ) .  Therefore whenever y = 1 + l/(k2h;L), the right-hand side of the in- 
equality vanishes, but the left-hand side can remain positive. This is a contradiction. 
Therefore G < F < q*, i.e. F < q* or 

(22 )  a [ l + 2 y k h l + 2 k 2 h f + # ( y +  l )k3hf]  < - - -1[ (p(z ) -p(1) )g-k2a]  

is the appropriate instability criterion, since the requirement that G < F is superfluous. 
If now a --f 0, one recovers from (22 )  the well-known classical instability criterion, 

According to (22 ) ,  the effects of the surface tension and the viscosity are both stabilizing 
but the gravity or, more precisely, (p(2)-p(1))g, the difference of the fluid densities, 
tends to destabilize the interfacial wave when p(l) < p@) as one would expect. Further, 
since, for sufficiently small h,, 

k2h3 
3v 

namely 0 < (p'" - $')) 9 - k2a.  

equation (22 )  implies that 

a (T) 4pg < - "' [ (pM - ~(1)) g - k2a] 
3v 

equation (22 )  implies that 

or k2a  + 4kav - (pcz) - p(l)) g < 0. (23)  

Hence the interfacial wave is unstable when the wavenumber k,  and the interfacial 
heat and mass transfer a, satisfy (23 ) .  

It can easily be shown (see appendix C) that all the roots (or their real parts) of a 
real cubic are negative if and only if all the coefficients are positive (and clc2 > c3, if 
(21 )  has complex roots). Thus, according to (21) ,  all the modes of an interfacial dis- 
turbance are stable if and only if co, c,, c2 and c3 are positive (and clcZ > c,, if (21 )  hes 
complex roots). When y > 1, a > 0 and b > 0, therefore c,, > 0. Also from (21 ) ,  when 

c3 > 0, CT < q* < F ,  

i.e. for F ,  G, q* and a*, defined in (21 )  and (12 ) ,  

< a[l + Sykh, + 2kzhf + 8(r + 1 )  ksh;]. (24)  
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It can be shown that, for y = O(h72) and arbitrarily small h,, if a satisfies (24) ,  c, > 0, 
c2 > 0 and clc2 > c3 will also be satisfied. Therefore c3 > 0 implies c, > 0, c, > 0 and 
c1 c2 > c,; and (24 )  is the necessary and sufficient condition that interfacial disturbances 
will be stable. 

The first inequality in (24 )  ensures that 0 < q*, so that the surface tension u cannot 
be too large to inhibit completely the heat and mass transfer across the interface. 
Thus, for values of u such that 0 < q*, the stability criterion is given by 

kz@ 
3v 

- [ ( p “ - p ( ” ) g - k 2 ~ ]  c a[l +2ykhl+2k2h!+#(y+  1) k3hi]. 

Since from (25 ) ,  for given 
following estimate holds, 

p@) and u, there are values of a, k and h, such that the 

- [(/I”’ -/I(’)) 9 - k%] < a ( - 4ky) < a[l  + Bykh, + 2k2h4 + #(y+ 1) k3hi], 
k2hf 
3v 

an interfacial wave is stable if the wavenumber k, and the interfacial heat and mass 

transfer a, satisfy 2 3  k-!! [ (p(2) - p“)) g - k%] < a (Ff), 
3v 

i.e. if 

Consequently combining the results of (19 ) ,  (20) ,  (23)  and (26)  leads finally to the 
critical dispersion relation, 

and the corresponding critical wavenumber, 

k2u  + 4kav - (p@) - p‘l)) g > 0. (26)  

k2u + 4kav - (p@) - ~(1)) g = 0, 

k ,  = - 7 + ( 7 + k : )  2av 4 a V  * , 

(27)  

where 
(p‘2).-p(l)) t 

kc = ( 9) 

is the classical critical wavenumber. Thus when there is an interfacial transfer of 
mass and energy coupled by viscosities of the fluids, the interfacial disturbance is 
unstable if k < k ,  and it is stable if k > k,. 

If the next-higher-order terms, i.e. O(hf), are retained when approximation of the 
dispersion relation (13 )  is taken, one will obtain a quartic or biquadratic equation as 
the dispersion relation, but will arrive at the same result as before. 

5. Interfacial stability when a < 0 (a defined in equation (12)) 
This corresponds to the case where the direction of the temperature gradient is 

from the denser to the less dense fluid. In  order to relate Palmer’s (1976) investigation 
with the instability criterion obtained earlier, it is desirable to explain briefly the 
terminology of ‘vapour recoils ’ and ‘induced convections ’, referred to in Palmer’s 
(1 976) paper. Whenever there is evaporation, the energy difference between molecules 
in the liquid phase and those in the vapour phase must balance the latent heat of 
transformation released or absorbed a t  the interface. As the vapour molecules escape 
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from the interface, each molecule leaves behind an equal but opposite amount of 
momentum. This is known as the 'vapour-recoil'. Referring to figure 1, let a crest be 
defined as a point on the interface, which has the maximum displacement above the 
x axis when p(l) > p@), and the crest will be below the x axis when @) < pCz). A trough 
is the mirror image of a crest with respect to the x axis. As a result of the wavelike 
profile, the vapour pressure is not uniform along the interface, since a t  a crest it is 
smaller while at a trough it is larger than its equilibrium value at  y = 0. Such a 
difference of vapour pressure along the interface gives rise to a non-uniform distri- 
bution of the rate of evaporation, and hence a non-uniform distribution of vapour- 
recoils. This, in turn, generates induced convections or vortices on either side of and 
immediately adjacent to the interface. These induced convections will grow or decay 
with time, depending upon the rate of evaporation and how effectively momenta 
can be transmitted from the vapour-recoils to the denser fluid. However, the surface 
tension will remain uniform for linear analysis by arguments similar to those of uniform 
tension in linear vibrations of an elastic membrane or string. 

Referring to figure 1, the system considered by Palmer (1976) corresponds to: 
h, -+ co, h, -+ co; a < 0, i.e. a cooler vapour superposed on a hotter liquid; and p@) < p(l), 
i.e. the vapour being under reduced pressure. Let a = -7 < 0. Since p(l) > p(,), there- 
fore a* = - (p(l) -p@)) g - k2a and from ( 1  5a)* the interfacial wave will be unstable if 

Since 7 > 0 and p(1) > p@), the second inequality of (28) involving a negative term is 
superfluous, and the instability criterion is actually given by the first inequality of 
(28) ; hence the instability criterion becomes 

4k7v > k2a + (p(1) - P (2) 19. 

From 7 = 1011, 7 is proportional to the rate of evaporation and hence to the vapour- 
recoil. Thus interfacial waves tend to be more unstable for larger 7. The destabilizing 
effect of vapour-recoils will be enhanced by the kinematic viscosity v, for the latter 
will help the vortices to grow in size. This growth of vortices together with the tem- 
perature gradient in the fluids will enable transports of more hotter fluid elements to 
the interface from one side but more cooler fluid elements to the interface from the 
other. Thus there is an escalation of the temperature gradient across the interface. 
Consequently the interfacial disturbance tends to be more unstable. Rewriting the 
above inequality as 

shows that the difference of the fluid densities, ( ~ ( 1 )  -p@)) g, tends to stabilize the 
interface. Apart from the stabilizing effect of gravity, stabilization can also arise from 
the effect of hotter liquid protruding into the cooler vapour region. There are two 
competing effects taking place simultaneously at  the crest, namely evaporation and 
re-condensation. For the larger the value of (p(l)-p(2))g the amount of latent heat 
released by condensation at the crests will be larger, which will then be used in heating 
up the vapour in the vicinity of the crests and thus enhancing the evaporation. On 
the other hand, as the cooler vapour tries to penetrate into the hotter liquid region, 
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the larger the value of (~(1) - P ( ~ ) )  g coupled by higher vapour pressure at the trough, 
the more rapid will be the condensation. From (28)* it  is observed that the surface 
tension will remain as a stabilizing force whether a > 0 or a < 0. Furthermore the 
effects of the surface tension and the difference of fluid densities are wavenumber 
dependent; for short wavelengths (or large k )  stabilization is mainly due to the surface 
tension cr, but for long wavelengths (or small k )  the difference of fluid densities 
( ~ ( ‘ ) - p ( ~ ) )  g will have a more important stabilizing effect. These stabilizing and de- 
stabilizing mechanisms agree in general with those suggested by Palmer (1976). 

Finally when a < 0, the interfacial disturbance will always be unstable as pointed 
out by Hsieh (1978). We shall proceed to show this as follows. 

Let a = - 7 < 0. Then it can be shown that the first inequality of (16)  will not hold, 
i.e. (17)  will not be satisfied, when a < 0. Substituting a = -7 in the coefficients of 
(14)  gives 

b - ( (U+p(2))2, 
0 -  P 

b, = 4(p(l) + P ( ~ ) )  - - + 2k2[a - ~ p ( ~ ) (  1 - 2a1 an)]) , K 
b, = 4k2 ( I  --+2k2a +2k [ y ”  --7+kP(3a+p(1)+p(n))] (8k3a+-$) -64k6a2, 

b, = k2(8k9a+$) (-?+?), 4k7 B 

a, = p(l’/(p‘l) + p‘2’), 

a, = p@/ (~(1) + p@)), 

where only cr* has to be replaced by cr* = - [ ( ~ ( ~ ) - p @ ) ) g +  k%] = - B < 0 ;  otherwise 
the coefficients b,, b,, b,, b, and b, remain unchanged. That b, > 0 now implies 

4k7 or B > 4kw.  
B 
Y 2  Y 
-> -  

For values of 7 and Y satisfying the above inequality, since now b, b, b,, bob: and bt b, 
of (16)  will be of the same order, O ( Y - ~ ) ,  (17)  cannot be relaxed as it could previously. 
But, as defined in (17)  and ( I S ) ,  

therefore An and higher-order terms may be neglected as 7 -+ 0 for a fixed Y and (17) 
reduces to 

[ 16k8(e + 4 4 ~ 2  + 288e3 - 2864 - € 5 )  + 2k4( 1 - 6s + 3 6 0 ~ ~  + 162e3 - 25e4) Y2@(1) +P(2)’, 
kB 

k2B2 27 
+ ( 1 - e - 4e2) Y4(p(i) + P ( 2 ) ) ~ ]  [ - qPpqql 

kB 
128kse2( 1 + 24e - 3e2) + 8kC( 1 + 32e + 88e2 - 2e3 - e4) vZ(p(1) + p‘2)) > 
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Letting v +- 0, the above condition becomes 

or (1-e-4eZ)+k2(1-4e+6~2+4es+~4) < 0 
v(p(1' + p'") 

which is a contradiction, since the left-hand side of the above inequality should be 
positive for 0 < E < 1 .  Thus the sufficient condition for interfacial stability ( 1 7 )  does 
not hold in this case. Therefore not all the roots of ( 1 4 )  are negative and the interfacial 
disturbance will be unstable. 

So far we have been mainly concerned with cases of a > 0, but what has just been 
discussed was essentially a case of two semi-infinite layers of fluids of different den- 
sities, superposed above one another, such that the upper layer was maintained at  
lower temperatures and the lower layer at higher temperatures. This is an example 
of the case ct < 0. Before concluding the present study, it may suffice to consider the 
case of a finite layer of cooler vapour on top of a semi-infinite layer of hotter liquid. 
Without going through all the algebraic manipulations again, one can make use of 
the earlier results as follows. Referring to figure 1, it  can be shown that if p(l) > p(2) 
and as h, +- 00 and h, -+ 0 in the derivation of ( 2 1 )  one will arrive a t  the same dis- 
persion relation as ( 2 1 )  except that y and r* now become 

Let a = -7 < 0. Then by means of ( 2 2 ) ,  i.e. F < r]*,  one obtains the following in- 
stability criterion: 

7 [ 1 +  2ykh,+ 2k2h2,+ Q(y + 1 )  k3ht] > 3 [k2a+ (~(l)--p(~)) g ] .  
3v 

Again it can be shown that a stability criterion does not exist in this case. Let 
a = -7  < 0 be substituted in the coefficients of ( 2 1 )  and p(1) and p(2), h, and h, be 
interchanged. Then 

c0 = h%(a + 2bkh2), 

7h2, 1 2kh 2k2h2 
c1 = -- (2ya + dkh,) - - - -' + -' (2b - 1 )  + $k3hi(4b - i), 

vp(1) Y2 Y Y 

2 
c, = (*)' vp(1) [y2a+ kh,y ( yu- : ) ]  + vp(1) 7 [-" y + 4kh,- k2h;(7b - 4 )  

~3 = (F* - f j )  ( f j  - G*),  

where F* = - F ,  G* = - G and i j  = - r]*. Thus c3 > 0 implies G* < i j  < F*. For T ,  cr, 
v and h, within these intervals, cot c2 and c3 are positive, but c1 will be negative. There- 
fore c1c2 > c3 and the necessary and sufficient condition, viz. that all the roots (or 
their real parts) of a reaI cubic are negative, will not be satisfied (see appendix C). 
Hence not all the modes of an interfacial wave are stable. 

One may now conclude that, when a < 0, an interfacial disturbance is always un- 
stable. According to (28)* and (29) the kinematic viscosity v tends to increase the 
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growth rate of instability while the difference of fluid densities, ( p ( ' ) - ~ ( ~ ) ) g ,  tends to 
reduce the instability no matter whether the upper layer is finite or infinite. 

If v =/= 0 (i.e. for viscous fluids), the viscosity will enhance interfacial instability 
because an increase in the viscosity v implies a decrease in 7 ,  according to (28)* and 
(29). In  other words, the interfacial transfer of mass and heat will be inhibited by 
viscosity to such an extent that a steady build-up of heat at the interface occurs, 
because of the existence of temperature gradient in the fluids. Consequently an inter- 
facial instability may be triggered off by any small disturbance. Thus, when the 
temperature gradient is directed from the denser to the less dense fluid, there will 
be no critical dispersion relation and hence no critical wavenumber. The stabilizing 
effect of the viscosity will become destabilizing as a result of reversing the temperature 
gradient,i.e. a change froma > 0 (corresponding top(') < p@)) t oa  < 0 (corresponding to 
p(l) > p@)), for in the latter case the vapour-recoil and the gravity, both pointing down- 
wards, reinforce each other. But in the former case both the gravity and the viscosity 
tend to oppose the vapour-recoil and thus suppress the growth of vortices which, 
besides escalating the temperature gradient across the interface, will also tend to lower 
the surface tension. 

6. Conclusion 
The above study shows that the effect of the surface tension always stabilizes an 

interfacial disturbance no matter whether a =- 0 or a < 0, where the sign of a,  defined 
in (12), will indicate the direction of the temperature gradient across the interface. 
However, the viscosity tends to stabilize an interfacial disturbance if a > 0 but de- 
stabilizes it if a < 0;  and, referring to figure 1, the gravity tends to destabilize the 
system when p(l) < pcz) but stabilize it when p(l) > p(2) with the stabilizing effect being 
enhanced by the interfacial transfer of mass and heat. For a 0, the kinematic 
viscosity Y of the fluids will affect the critical wavenumber. For the Rayleigh-Taylor 
stability problems we are considering, the critical wavenumber is given by 

where 

If v $. 0, since k, -kc  < 0 or k ,  < kc, the effect of viscosity is to lower the value of 
the critical wavenumber and hence enlarges the spectrum of wavenumbers over 
which interfacial disturbances will be stable. 
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his generous and valuable advices throughout the entire period of the work; to Pro- 
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Applied Mathematics, Brown University, in the current academic year; and to Pro- 
fessor C-H. Su for his hospitalities. The author is also grateful to other members of 
the Division for their friendliness and the congenial academic atmosphere. 
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Appendix A 

the text leads to (13), which is a transcendental equation, viz. 
Expansion of the determinant of the coefficient matrix referred to on page 11 5 in 

p$) &)(ing*&) b(2) - nZc(2)) + pf)  aC2) (ing*pf) b(1) - n2~(1)) 

+ p$) dW(ft2) - e(2)) + pf) d(2)(e(1) -f(U) + p$) bWl(2) + p$) b(2)1(1) = 0, 

kp(l) 
2 

where a(l) = - [(ql - k )  sinh 8, - (al + k )  sinh 0-1, 

b(l) = - &[(al - k ) ,  cosh 8, - (ql + k ) ,  cosh 8- + 4kql], 

dl) = - [(ql - k )  sinh 8+ - (pl + k) sinh 0-1, 

d(1) = - [(ql - k)3 cosh O+ + (ql + k)3 cosh Ow- 2p1(q2 + 3k2)], 

P'l'P1 
2k 

k,&) 
2 

1 
f(l) = 5 [k2@f' -,UP)) (44 + k2)  -,dl)(d + k4)] (cosh 0, - cosh 0-), 

l(1) = - [ (3kd  + k3q1 - 26: - k2q; - 7c4) cosh 8+ 

k 

kp(U2 

2 

+ (3kd  + k3q1 + 2qf + k2q4 + k4) cosh 0- - !!& (d + k2q? + 2k4)],  

O+ = (ql + k )  k,, 8- = (ql - k) h,; 

and a(,), U2), d2), d(,), e(2), f2) and iY2) are similarly defined with p(l), ,dl), q1 and h, being 
replaced by p a ,  ,d2), q, and h, respectively. 

Appendix B. Sufficient condition that all the roots (or their real parts) 
of a real quartic are negative 

It has been well documented (Burnside & Panton 1892) that, if all the roots of a 
quartic are negative, all its coefficients will be positive. However, the converse is not 
true (Beuriger 1901), for example, although all the coefficients of the quartic 

x4+x3+x2+x+ 1 

are positive, the real parts of two of its roots are positive and those of the other two 
negative. So it  is desirable to find a sufficient condition for all the roots (or their real 
parts) to be negative. In  general a real quartic, 

box4 + b1x3 + b,x2 + b,x + b,, (A 1 )  

can be resolved into two quadratic factors (Bernside & Panton 1892), 
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where 

and 8 is a solution of the reducing cubic equation 

0. ( A  3)  
4b,383- b,b4-b,b,+?!)b,B+l?-f-%+ b b b b,b2b3 -___--- bob: bfb, 2 b3 = ( 4 12 48 16 16 216 

Therefore the four roots of ( A  1 )  are 

z =A{ b0 -(:-M) -c [ ( ~ - M ) 2 - b , ( ~ + 2 b 0 0 - N ) ] ’ )  

and a similar expression with - M and - N replaced by M and N .  By writing abl & M ,  
b,(-Qb,+ 26,B +_ N )  and the square root into real and imaginary parts and comparing 
the real part of #bl & M with that of the square root, one can show that all the roots 
(or their real parts) of the biquadratic ( A  2 )  will be negative if b, > 0, Re [)bl _+ MI > 0 
and (@,+ 2b08 f N )  are real and positive, i.e. if 

b, > 0, Re [($bl)2-M2] > 0, (&b2+ 2b,19)~- N 2  > 0, 

i.e. if b, > 0,  (&bl), > Re(M2), (&b2+2b,0)2 > N2. (A 4) 

Since complex roots of a real polynomial always occur in conjugate pairs, the cubic 
equation ( A  3) has at least one real solution, and from (A  2 )  M2 is real. The sufficient 
condition described in ( A  4 )  becomes 

bo > 0, +b2 > bo8, bob4 > 0. (A 4)’ 

p+3H5+G = 0, (A 5) 

From a change of variable c = 6b,$, one can rewrite the cubic equation ( A  3) as 

where H = -&(12bob4-3blb3+b~), 

G = fb2(36bob4-bE)+$(blb2b3-3bob~-3b4b4). 

Since from ( A  4)’ b, > c, combining this inequality with (A 5) leads to 

bi + 3Hb2+ G > 0. (A 6) 

Substitution for H and G defined in (A 5 )  and using (A 4)’ and (A  6 )  lead to the desired 
sufficient condition; i.e., if 

b, > 0, blb2b,-b,b,2-b~b4 > 0 and b, > 0, 

all the roots (or their real parts) of the quartic (A 1) will be negative. 

Appendix C. Necessary and sufficient condition that all the roots (or their 
real parts if complex) of a real cubic are negative 

It is well known that if all the roots (or their real parts) of a real cubic, 

9+Plx2+l)2”+P3> (A 7) 
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are negative, all its coefficients are positive (Burnside & Panton 1892). That the con- 
verse is also true will be shown by reductio ad absurdum. Since complex roots of a 
real polynomial occur in conjugate pairs, the cubic (A 7) has either one or three real 
roots. First consider that all the roots x,, x2 and x3 of (A 7) are real. Suppose that 
p 1  > 0, p 2  > 0 and p 3  > 0. 

Case (i) : Clearly x,, x, and x3 cannot be all positive for this would implyp, c 0 and 
P3 < 0. 

Case (ii): If x, = -r < 0, x2 > 0 and x3 > 0,  then, since p1 = - ( -7+x2+x3), 
p ,  = -r(x2+x3) +x2x3 and p 3  = 7x2x3, p ,  > 0 and p 2  > 0 imply that T > x,+x, and 
~2x3  > r(x2 + x,), hence ~ 2 x 3  > (x2 + x,),, i.e. 0 > xt +xi + ~2x3, whichis a contradiction. 

Case (iii): If x, = -I- < 0,  x2 = -p  c 0 and x, > 0, then, since p ,  = -rpx3 c 0, 
this contradicts the hypothesis. Consequently the only remaining alternative will be 
that, ifpl  > O,pa > 0 , p 3  > 0,  thenx, c 0,  x2 < 0,  x3 < 0. 

Next consider that x, is a real root and x, and x, are the complex conjugate roots. 
Suppose p ,  > 0, p 2  > 0 and p ,  > 0. 

Case (i): If x1 > 0, Re (x,) = Re (5,) > 0,  then 

p l  = -[x1+2Re(x,)] < 0 and p ,  = -xllx212 c 0. 

This is a contradiction. 
Case (ii): If x, > 0, Re (x2) = Re (x,) < 0, then 

p ,  = -x11x212 < 0. 
Again this is a contradiction. 

now only two remaining alternatives: either ( < 0 or E > 0. Since 
Case (iii) : Let x1 = - r < 0, x2 = 5 + $3, x3 = < - ip, where 6 and p are real. There are 

- ( - 7 + 2 < ) = ~ - 2 f ,  (A 8 )  

(A 9) 

(A 10) 

P2 = - T ( 2 8  + t2 + P2, 
233 = T(E2 +B”, 

eliminating r and /3 from (A El), (A 9) and (A 10) leads to 

Since < 2 0 corresponds top, 2 p l p 2 ,  one can show that 5 c 0 corresponds top, c p l p 2 .  
Hence 

This result has been applied on pages 118 and 119 in the text for obtaining a criterion 
under which interfacial waves will be stable. 

111,pZ,p3 > andp1P2 > p3OX1 O ,  Re (x2) = Re (x3) O* 

REFERENCES 

BEURIQER, J. 1901 Zur AuJomng der bipuudratwchen Cfleichungen. Program (Beilage) K 

BURNSIDE, W. S. & PANTON, A. W. 1892 Theory of Equations, 3rd edn. Dublin University Press. 
CIIANDRASEKHAR, S. 1955 Proc. Cumb. Phil. SOC. 51, 162-178. 
CIIANDRASEKHAR, S. 196 1 Hydrodynamic and Hydromagnetic Stability, ch. 10. Oxford University 

Bonn : Gymnasium. 

Press. 



Linear Rayleigh-Taylor stability of viscous Jluids 

HARRISON, W. J. 1908 Proc. Lo&. Math. SOC. 6 ,  396-405. 
HSIEH, D. Y. 1972 Trans. A.S.M.E. D, J .  Basic Eltglzg 94, 156-000. 
HSIEH, D. Y. 1978 Phys. Fluids 21, 745-748. 
LEWIS, W. J. 1950 Proc. Roy. SOC. A 202, 81-98. 
PALMER, H. J. 1976 J .  Fluid Mech. 75, 487-511. 
RAYLEIGE, LORD 1900 Scientific Papers, vol. 2, pp. 200-227. Cambridge University Press. 
TAYLOR, G. I. 1950 Proc. Roy. SOC. A 201, 192-196. 

127 




